

Tevatron 101

Ron Moore

Fermilab – Accelerator Division/Tevatron Dept.

A quick overview of the FNAL accelerator complex, Tevatron operations, and a few items of interest to those current and future pager carriers who worry that the CDF silicon system may look like an inviting target to the Tevatron...

Looking Down on the Fermilab Accelerator Complex

Tevatron Overview

- Synchrotron providing proton-pbar collisions @ 980 GeV beam energy
- Tevatron radius = 1 km \Rightarrow revolution time \sim 21 μ s
- Virtually all of the Tevatron magnets are superconducting
 - Cooled by liquid helium, operate at 4 K fun fact: ≈350 MJ stored energy!
- 36 bunches of protons and pbars circulate in same beampipe
 - Electrostatic separators keep beams apart except where/when desired
- Injection energy is 150 GeV
 - Protons injected from P1 line at F17
 - Pbars injected from A1 line at E48
- 3 trains of 12 bunches with 396 ns separation
- 2 low β (small beam size) intersection points (CDF and D0)
- 8 RF cavities (near F0) to keep beam in bucket, acceleration
 - 1113 RF buckets (53.1 MHz \Rightarrow 18.8 ns bucket length)

Bunch Positions

P13-P24

P25-P36

A1-A12

A13-A24

prot_pbar_b

A25-A36

A1-A12

Shot Setup Overview

- MCR crew performs beam line tune-up for Pbar, Main Injector, and Tevatron
 - Verify extracted beams are injected into next machine on the desired orbit
 - Helps reduce oscillations that cause emittance (size) growth
- MCR crew also sets Tevatron tune, chromaticity, coupling to desired values @ 150 GeV
 - Important for beam lifetimes
- Shots can begin once all the machine and beam-line tune-ups are complete
 - "Sequencers" handles many things automatically

Shots to the Tevatron

- Protons are injected first (onto central orbit) 1 bunch at a time
- Separators turned on to put protons on helical orbit
- Pbars are injected 4 bunches at a time into abort gaps
 - After 3rd and 6th pbar transfers, pbars "cogged" around to clear the gaps for next 3 transfers
- Accelerate beams to 980 GeV (≈90 sec)
- Final pbar "cogging" to allow collisions at CDF and D0
- Low Beta Squeeze (≈2 minutes)
- Initiate Collisions (change separator voltage around IPs)
- Scraping (~10-12 minutes)
- Turn on Tevatron Electron Lens (TEL) (knocks out beam from the abort gap)
- MCR declares store ready for HEP
- Typical time from store end to start of new store: 2-3 hours
- Once losses are low and beam is stable, ramp the HV and begin taking data

Separators

- Used to kick protons and pbars onto different helical orbits
- Electric field between parallel plate electrodes kick protons and pbars in opposite directions
 - Kick angle = # modules * (2 * Voltage / Gap) * Length / Energy

Helix

- Protons & pbars spiral around each other as they revolve in opposite directions
 - Deliberately running beams off-center by several mm
- Can control tunes, etc., of each beam (nearly) independently
- Helix size limited by physical aperture @ 150 GeV, separator voltage @ 980 GeV
 - High voltage ⇒ increased risk of spark (breakdown) between separator electrodes

Ramp

- 150 → 980 GeV in 86 sec; max ramp rate is 16 GeV/s
- Hysteretic "snapback" of magnets occurs over first several seconds
 - Complicates setting of tune, coupling, chromaticity there
- 8 RF cavities 4 proton + 4 pbar
 - Phased such that one beam sees no net voltage from other cavities
 - RF voltage is constant; bucket area minimum early in ramp
- Bunch lengths shrink by $(980/150)^{1/4} \approx 1.6$
 - e.g., protons: $2.8 \text{ ns} \rightarrow 1.7 \text{ ns}$ (Gaussian sigma)
- Final pbar cogging done after reaching flattop
- Beam separation decreases > 600 GeV
 - Can't run separators hard enough
 - Separation decreases faster than beam size

Squeeze

- Shrink the beams from 1.6 m → 28 cm β* at CDF and D0
 - Smaller β* means smaller beam size at the interaction points
- Takes ≈125 sec to step through 14 different lattices
- Also need to switch polarity of B17 horz separator
 - Put pbars on "right" side for diffractive physics pots during collisions
 - Injection helix → Collision helix
 - Horizontal separation minimum at that time
 - Several years ago, up to 25% pbars lost at that step
 - Developed new separator scheme to fix, but it's still difficult to transition
- 28 cm β* implemented in September (increase luminosity ≈8%)

Initiate Collisions

- No head-on collisions until "Initiate Collisions" ramp plays out
 - Now happens automatically after the squeeze completes
 - Until then, the beams intentionally miss each other at CDF & D0
- Separator bumps removed, collisions begin
 - Ideally, orbits throughout arcs remain same, only IP changes
 - Tunes are changed, too, to compensate for beam-beam tune shifts
- Collision helix is effectively a set of separator 3 (or 4)-bumps in each plane in each arc
 - Control horz/vert separation in each arc independently
 - Can also control position (overlap) & crossing angle at IP

Halo Removal, a.k.a. Scraping

Luminosity Formula

$$L = \frac{fN_p N_a}{2\pi(\varepsilon_p + \varepsilon_a)\beta^*} H(\frac{\sigma_z}{\beta^*})$$

- *N* = bunch intensity, *f* = collision frequency
- ε = transverse emittance (size), σ_z = bunch length
- H = "hour glass" factor (<1, accounts for beam size over finite bunch length)

Increasing the Luminosity

- Smaller β* (new 28 cm β* lattice in Sep 05)
- Larger N_a and smaller ε_a from Recycler + electron cooling

Initial Luminosities

Beam Intensities @ HEP

While the Tevatron Has a Store...

- MCR crew monitors store, responds to CDF/D0 requests
 - e.g. try to reduce losses Tev expert always on-call to assist
 - Adjust pbar tunes to avoid a resonance (prevent decreases in lifetime)
 - Flying wires + orbit stabilization (automatic)
- What can go wrong? (Too many things to list, really...)
 - Thunderstorms, power glitches: can't control Mother Nature or Commonwealth Edison
 - Cryogenic failure, e.g. wet engine: usually enough time to abort beam before quench
 - Magnet power supply failure: most supply trips cause automatic abort
 - TEL trip: DC beam accumulates in abort gap
 - RF cavity trip: increase bunch lengths (decrease luminosity), dump beam into abort gap
 - Automatic abort if >1 cavity trips
 - Separator spark: drive beam into collimators causing a quench, loss of store
 - Very fast, can have bad results (indirectly)
 - Abort kicker pre-fire: 1 kicker tube fires at random time, possibly in middle of train
 - Very fast, possibly very bad ⇒ kick protons into CDF, fry some ladders
 - 1 kicker insufficient to kick beam into abort dump, beam circulates with large oscillation

Store Termination by Category

Aborting the Beam

- Abort kickers ramp up synchronously in gap between P24/P25 (A36/A1)
 - 70% full voltage when next bunch passes by; enough to kick into dump
- Beam in abort gap while kickers rising gets kicked, but not into dump
 - Can circulate with large distortion, strike apertures downstream, cause quenches, ...
 - Collimators at A11, A48 help protect CDF
- Abort kicker pre-fires happen when 1 thyratron breaks down spontaneously
 - Other abort kickers automatically fire < 1 turn later to kick rest of beam into dump
 - Tubes holding off 36 kV @ 980 GeV over entire store many hours
 - Thyratrons are conditioned at higher voltages, but pre-fires can (will) still occur

Aborting Beam Quickly

- The faster the better...why? See next slide...
- Quench Protection Monitor (QPM)
 - Prior to Dec 2003, ran on 60 Hz clock (16.7 ms)
 - · Beam could circulate 100s of turns after quench
 - Modified in 2004 to "fast-abort" within 900 μs of quench
 - Tweaked after Nov 21 quench to pull abort within 550 μs
- Voltage-to-Frequency Converters (VFC)
 - Testing modification to speed measurement of resistive voltage across magnet cells
- New Beam Loss Monitor (BLM) Electronics
 - Should allow improved performance, greater flexibility
 - Being installed during shutdown

Destroyed Collimators in Tevatron

10¹³ protons @ 1 TeV ≈ 1.6 MJ

tungsten

Abort Gap Monitors

- See beam in gaps directly via synchrotron light
 - Gated PMT inside synchrotron light box in C-sector
 - Can see few E9 intensity (enough to cause quenches)
 - T:AGIGI2 is important ACNET device
- Rick's counters outside of shield wall
 - Sees beam being lost from gaps ending up near CDF
 - Indirectly estimate amount of beam in gaps
 - Can vary even if intensity in gap remains constant
 - C:B0PAGC is relevant ACNET device

- 7 E9 is agreed upon "safe" limit during HEP
- Have aborted cleanly with T:AGIGI2 = 45 E9 during HEP (beam on helix, collimators in)

TEL – Tevatron Electron Lens

- Used continuously to remove DC beam from the gaps
- Periodic pulsing of e-beam drives beam toward tune resonances
 - Eventually lost on collimators (most of it anyway)

Flying Wires

- Fly wires through beams
- Scatted particles detected in scintillator paddles
- Can cause loss spikes in CDF/D0
- Measure transverse beam profiles
- New wires are <u>thinner</u> (7 μm), cause less loss
- Fly every hour during HEP to see emittance evolution

Flying Wires (2)

Magnet Motion

- How do see magnet motion?
 - Tiltmeters, LVDTs, water levels, surveys
- Observed magnet motion on different time scales
 - Slow drift over weeks, months
 - Ground motion, etc.
 - Wiggles, jumps over seconds, minutes, hours
 - Quenches, earthquakes, HVAC, weather, tides
 - Vibrations at few → tens of Hz
 - Traffic, pumps
- ~µm magnet motion near IPs give ~mm orbit changes in arcs
 - Readily observable during stores using Beam Position Monitors (BPMs)
 - Can cause spikes in background

Sumatra Earthquake 3/28/05

Magnet Motion / Orbit Stabilization

The Future

- Get to initial luminosities L = 300 10³⁰ cm⁻² s⁻¹
- Want 2× more pbars!
- New working point? Near 1/2 or 2/3?
 - Simulations show better lifetime
 - More tune space may allow 20% more protons?
- 4 more years?!
 - Accelerator upgrades nearly complete...keep complex running well

• Maximize integrated luminosity recorded to tape by CDF & D0

Additional Slides

Glossary

- Stack = antiprotons being stored in the Accumulator
- Stash = antiprotons being stored in the Recycler
- **Store** = beam kept circulating continuously in the Tevatron; can be an HEP store (protons and pbars), or proton-only for studies/maintenance
- Ramp = accelerating beam from 150 GeV to 980 GeV (in Tev), dipole magnet current increasing to bend beam harder as energy rises
- Flattop = Tev ramped to 980 GeV, before low β squeeze
- Squeeze = Focusing the beams to smaller transverse size at CDF/D0
- Low Beta = Tev @ 980 GeV, after low β squeeze
- Initiate Collisions = turn on electrostatic separators that make beams collide at the centers of CDF and D0
- Scraping = Removal of beam "halo" (stuff far away from beam center) by moving stainless steel collimators close to beam; reduces beam losses at CDF/D0; done automatically after collisions begin; takes 12-15 minutes
- Cogging = moving the (pbar) beam longitudinally desired location
- Abort Gap = series of empty buckets between bunch trains to allow abort kickers to reach proper voltage to kick beam into dump blocks

Glossary

- BLM = Beam Loss Monitor
 - lonization chambers that measure dose rates (beam losses) at many positions around the ring.
- BPM = Beam Position Monitor
 - Measures horz or vert beam positions within beampipe (≈10 µm resolution)
 - Pick-ups located near each quadrupole (≈240 BPMs)
- FBI = Fast Bunch Integrator
 - Provides Tev bunch intensity measurements
- **SBD** = Sampled Bunch Display
 - Gives Tev bunch length and intensity measurements
- DC Beam = beam not captured in an RF bucket
 - Can circulate around for minutes before losing energy via synchrotron radiation and striking an aperture (collimator)
- TEL = Tevatron Electron Lens
 - Device that shoots a ~few mA electron beam in the Tev beam pipe
 - Used to knock beam out of the abort gaps (reducing CDF backgrounds)
 - Intended to compensate beam-beam tune shift of pbars from protons (not yet)
- **QPM** = Quench Protection Monitor
- QBS = Quench Bypass Switch

Pictures of Magnets, etc.

Demonstration of Pbar Cogging in the Tevatron

Table of Separator Stations

Horizontal	# modules		Vertical	# modules
B11	2	short arc	B11	1
B17	4		B48	1
			C17	4
C49	1		C49	2
D11	2		D11	1
D48	1	long	D17	2
A17	1	arc	A17	1
A49	1		A49	2

New separators being installed in the current shutdown

Total: 26 separator modules + 4 spares

Each separator station has 2 power supplies, polarity switch, resistors, controls...

Tevatron Electrostatic Separator Components

Looking into a separator

Inefficiencies @ 150 GeV

Up the Ramp

Ramp Inefficiencies

Through the Squeeze

Squeeze Inefficiencies

Comfort Plot @ 150 GeV

Quad Motion Depends on Hall / Tevatron Differential Pressure

Recent Component Failures

- Nov 21 B17 spool package
 - B11 horz separator spark caused multi-house quench
 - Kautzky valve on spool failed closed
- Jan 24 Insulating vacuum leak in A44
 - Operator error left SQD0 (skew coupling) supply off
 - Tunes landed badly after initiating collisions, large losses
 - A44 cell not hit with losses, quenched with adjacent cells
 - Faulty O-ring installation years ago finally failed
- Feb 22 F47-2 dipole
 - Spare abort input pulled abort spuriously
 - Kautzky valve on dipole failed closed

Kautzky Valve Poppets

- During quench, pressure forces valve open, allows He to escape
- Poppet can break off, remain in closed position
- 1 similar failure in 20 years, now 2 in three months
 - Replace all ≈1200 He Kautzky valve poppets during shutdown

Closed Kautzky valve

Broken poppet from B17 spool Kautzky valve